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Abstract The purpose of this numerical study is to analyse the character of transition from
laminar to chaotic convection in a fluid layer bounded by no-slip walls in two space dimensions for
varying aspect ratio odd-shaped enclosures consisting of two rectangular chambers, with a linking
horizontal enclosure. For a medium Prandtl number fluid ðPr ¼ 7Þ; the numerical solution of two-
dimensional Navier-Stokes momentum and energy equations with Bousinessq approximation has
been carried out. It has been found that there are finite Rayleigh numbers Ra1, Ra2 and Ra3 for the
onset of single, two and multiple frequency oscillatory motion at different spatial locations in the
enclosure. As Ra is further increased period doubling is observed. The onset of strong chaos
appears when Ra¼Ra3. This system does not revert to steady state convection at high Ra as
observed by other researchers for the case of Rayleigh-Benard convection. Moreover, the period
doubling transition process is consistent with the scenario of Ruelle, Takens and Newhouse. As Ra
increases, the power spectrum, and time series of various dynamical variable signals, etc. all show
an increasing degree of characteristics of chaos.
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Nomenclature
W ¼ dimensional height and width

of the enclosure, m
L ¼ width of the vertical and

horizontal legs of the
enclosure, m

ARL ¼ leg aspect ratio L/W
g ¼ acceleration due to gravity,

m/s2

n ¼ kinematic viscosity of fluid,
m2/s

k ¼ thermal diffusivity, m2/s
b ¼ coefficient of thermal

expansion 2ð1=rÞð›r=›TÞ; 1/K
Tc ¼ temperature of cold wall, K
Th ¼ temperature of hot wall, K
dT ¼ temperature difference between

hot and cold walls, Th 2 Tc; K
Pr ¼ Prandtl number of fluid n/k
Ra ¼ Rayleigh number

gbW 3dT=ðnkÞ
U ¼ dimensional vector velocity of

fluid particle, m/s

V ¼ ðu; vÞ ¼ dimensionless vector velocity
of fluid particle ðU W Þ=k

p ¼ dimensional pressure of fluid
in motion, N/m2

T ¼ dimensional temperature
of fluid particle in motion

ph ¼ dimensional pressure of fluid
at rest, N/m2

ro ¼ density of fluid at rest, Kg/m3

P ¼ non-dimensional pressure
ðp 2 phÞW

2=rok
2

u ¼ non-dimensional temperature
ðT 2 TcÞ=dT

c ¼ non-dimensional stream
function

; ¼ non-dimensional dilatation rate
of fluid particle f·V

Ke ¼ non-dimensional kinetic energy
per unit mass of the fluid
particle, 1

2 ðu
2 þ v 2Þ

D ¼ Laplacian operator f2

dt ¼ non-dimensional time step

Evolution to
aperiodic

convection

895

Received January 2001
Revised April 2002

Accepted May 2002

International Journal of Numerical
Methods for Heat & Fluid Flow,
Vol. 12 No. 8, 2002, pp. 895-915.
q MCB UP Limited, 0961-5539

DOI 10.1108/09615530210448697



Introduction
The problem of fluid flow driven by buoyancy forces is an excellent candidate
for attempting to understand the bifurcations and the changes in the flow
patterns as some control parameter is varied. This is because such flows
represent one of the simplest coupled non-linear problems of fluid flows. The
problem of natural convection in enclosures has received much attention for the
past 30 years because of their importance in such diverse areas as meteorology,
geophysics, astrophysics, nuclear reactor systems, materials processing, solar
energy systems, thermal energy storage systems and chemical, food and
metallurgical industries. An excellent survey is performed by Ostrach (1988) on
natural convection in enclosures. So far, both experimental and numerical
studies have revealed that as the main control parameter known as the
Rayleigh number (Ra), which is a relative measure of destabilizing forces of
buoyancy to the stabilizing forces of viscosity and thermal diffusivity, is
increased the flow undergoes a series of transitions from steady to periodic to
quasi periodic leading to a chaotic motion. Most of the studies carried out by
Baig and Asrar (1995), Curry et al. (1984), Mohamad and Viskanta (1990), Yang
(1988), Yang and Mukutmoni (1993a, b) for studying the development of
chaotic convection, have been performed on regular rectangular enclosures.

More recently, researchers have started focussing attention on odd
geometries and few studies with irregular geometries have been reported in
the literature. Natural convection within enclosures of general irregular
geometry with differentially heated walls was dealt by Coulter and Guceri
(1987). Glakpe and Asfaw (1991) studied natural convection in enclosures with
inner bodies of arbitrary shapes. Nithiarasu et al. (1995) have studied natural
convection in inverted L-shaped enclosures. Raji et al. (1997) studied natural
convection in cavities interacting with each other through fluid motion.

The present work deals with study of transition from laminar to quasi-
periodic natural convection followed by chaotic advection in an odd-shaped
enclosure comprising of two rectangular enclosures linked by a cold wall at the
top and a hot wall at the bottom (Figure 1). The present configuration
represents a basic configuration for the study of room ventilation, involving the
association of two chambers or cells which communicate laterally through an
opening, in the same manner as two rooms connected through a doorway,
window, or over an incomplete dividing wall. Some experimental and
computational studies have been carried out in similar configurations
providing flow pattern and heat transfer data for both air and water filled
enclosures. Blay et al. (1998) studied heat transfer through a horizontal aperture
connecting two non-isothermal rooms. Otis and Jones (1987), studied natural
convection in partially divided enclosures. Since the present study involves a
fluid with Pr ¼ 7:0; the results may not be directly useful for problems
involving room ventilation, however, the present study does provide some
insight into the various trends regarding the flow pattern and transitions from
steady to unsteady motions.
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Another possible application of the present problem is in the design of liquid
cooled heat sinks. Liquid cooled heat sinks provide the highest thermal
performance per unit volume and, when optimally designed, can exhibit a very
low thermal resistance. The space between the vertical legs of the enclosure
(Figure 1) can be utilised to mount the enclosure as a heat sink over some heat
dissipating object or device. Liquid cooled heat sinks are employed in some
thermoelectric or Peltier heat pumps.

To the best of the knowledge of the authors, none of the researchers have
studied the problem in the present geometry of the enclosure, with the chosen
boundary conditions, from the viewpoint of chaotic advection. Among the
possible routes to chaotic convection, Ruelle et al. (1978) suggest a scenario in
which by varying a control parameter like Ra a stationary solution changes to
a limit cycle. The periodic limit cycle changes into a quasi-periodic T 2 torus
having two incommensurate frequencies. Further increase in the control
parameter changes the T 2 torus to a T 3 torus or to a chaotic solution. The
other routes to chaos are subharmonic cascading as suggested by Fiegenbaum
(1978) or through generation of intermittent chaos. We have studied the routes
of transition to chaos in an odd-shaped two-dimensional rectangular enclosure
and also observed the change in spatio-temporal dynamics brought by the
modified geometry by varying the leg aspect ratios ARL.

According to Curry et al. (1984) there might be four Ra that distinguish
various flow regimes at different spatial locations, namely: Rac, critical Ra at
which convection rolls appear; Ra1, Ra at which rolls undergo a bifurcation to a
periodic oscillatory state; Ra2, Ra number at which two frequency oscillatory

Figure 1.
Odd shaped enclosure

showing locations of
spatial points 1W, 2W

and 3W
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flow develops; Ra3, Ra above which three frequency or higher quasi-periodic
flow develops and might be coincident with chaotic motion.

Our objective specifically are twofold namely, to check for the existence of
any one of these four Ra in a no-slip, two-dimensional odd-shaped rectangular
enclosure for medium Prandtl number fluid, and to ascertain the basic trends in
spatial and temporal patterns of flow with increase of Ra and ARL.

Formulation and numerical technique
The dimensionless governing equations of continuity, momentum, and energy
in two-dimension with Boussinesq approximation are given by:

›u

›x
þ

›v

›y
¼ 0 ð1Þ

›u

›t
¼ H 2

›p

›x
ð2Þ

›v

›t
¼ G 2

›p

›y
ð3Þ

›u

›t
¼ F ð4Þ

where

H ¼ 2u
›u

›x
2 v

›u

›y
þ PrDu ð5Þ

G ¼ 2u
›v

›x
2 v

›v

›y
þ Ra Pr uþ PrDv ð6Þ

F ¼ 2u
›u

›x
2 v

›u

›y
þ Du ð7Þ

The reference length, velocity and time used are W, k=W and W 2=k;
respectively. The Prandtl number of the fluid is taken as 7. No-slip boundary
conditions are employed for u and v on all the walls. The boundary conditions
together with the geometry of the flow domain can be seen in Figure 1.

In the present work, the finite difference method is used to solve the coupled
elliptic equations on a structured, non-staggered grid. The grids employed for
different ARL are shown in Figure 2. At lower Ra (,107) 51 £ 51 mesh
is employed while at higher Ra i.e. at Ra ¼ 107; a 81 £ 81 grid is employed.
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The non-linear terms in equations (2)-(4) have been evaluated by a variant of
quadratic upstream interpolation for convection kinematics QUICK scheme as
proposed by Leonard (1979). The diffusion terms are discretized using the three
point central differencing stencil, while the time integration has been performed
explicitly using Euler’s scheme in order to capture the unsteady physics
especially of the oscillatory flow regime.

Thus the non-dimensional velocity components and temperature at new time
level n þ 1 and at each grid point (i, j ) are obtained from equations (2)-(4) as
follows:

unþ1
i; j ¼ un

i; j þ Hn
i; j 2

›p

›x

� �n

i; j

( )
dt ð8Þ

vnþ1
i; j ¼ vn

i; j þ Gn
i; j 2

›p

›y

� �n

i; j

( )
dt ð9Þ

Figure 2.
Grids employed for

different leg aspect ratios
ARL
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u nþ1
i; j ¼ u n

i; j þ {F n
i; j} dt ð10Þ

The velocity field computed from equations (8) and (9) must be divergence free.
This is enforced through pressure by forcing the pressure to satisfy a Poisson
equation at time level n, obtained by taking divergence of the discrete
momentum equation i.e. by applying the discrete operator d=dx to equation (8)
and d=dy to equation (9). This results in the following discrete Poisson
equation:

d

dx

›p

›x

� �n

i; j

þ
d

dy

›p

›y

� �n

i; j

¼
d

dx
ðH Þni; j þ

d

dy
ðGÞni; j þ

1:0

dt

� �

�
d

dx
ðuÞni; j þ

d

dy
ðvÞni; j

� �
2

1:0

dt

� �

�
d

dx
ðuÞnþ1

i; j þ
d

dy
ðvÞnþ1

i; j

� �
ð11Þ

Since it is desired that the velocity components satisfy the continuity condition
at the new time level n þ 1; the last term on the right hand side of equation (11)
is forced to be zero. The pressure field obtained from the discrete Poisson
equation (11) therefore is employed in equations (8) and (9) to obtain velocities
at the new time level. This procedure is discussed in detail by Ferziger and
Peric (1996).

The pressure Poisson equation requires some care in the discretization on a
non-staggered grid as improper discretization may lead to spurious grid scale
pressure oscillations. The discretisation of the various terms in the pressure
Poisson equation is done as follows:

d

dx

›p

›x

� �nþ1

i; j

ø

›p

›x

� �n

iþ1
2; j

2
›p

›x

� �n

i21
2; j

" #

½ðdxÞ1 þ ðdxÞ2�=2
ð12Þ

›p

›x

� �n

iþ1
2; j

ø
ðpn

iþ1; j 2 pn
i; jÞ

ðdxÞ1
ð13Þ

›p

›x

� �n

i21
2; j

ø
ðpn

i; j 2 pn
i21; jÞ

ðdxÞ2

ð14Þ
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d

dx
ðH Þni; j ø

ðH Þniþ1
2; j
2 ðHÞni21

2; j

h i
½ðdxÞ1 þ ðdxÞ2�=2

ð15Þ

d

dx
ðuÞni; j ø

ðuÞn
iþ1

2; j
2 ðuÞn

i21
2; j

h i
½ðdxÞ1 þ ðdxÞ2�=2

ð16Þ

The values of Hiþ1
2; j

and Hi21
2; j

are obtained by linear interpolation using the
adjacent nodes.

However, the values of uiþ1
2; j

and ui21
2; j

are not obtained through linear
interpolation from adjacent nodes as this would lead to spurious pressure
oscillations. These velocities are obtained as follows:

un
iþ1

2; j
¼ 0:5ðun

pi; j
þ un

piþ1; j
Þ2 dt

ðpn
iþ1; j 2 pn

i; jÞ

ðdxÞ1
ð17Þ

The grid spacings in equations (12)-(17) are defined as follows:

ðdxÞ1 ¼ xiþ1 2 xi ð18aÞ

ðdxÞ2 ¼ xi 2 xi21 ð18bÞ

The velocity up in equation (17) is obtained from the momentum equation
without the pressure gradient term as follows:

unþ1
pi; j

¼ un
i; j þ

�
Hn

i; j

�
dt ð19Þ

This procedure closely resembles the momentum interpolation employed in the
finite volume method and is discussed in detail by Ferziger and Peric (1996).

The Poission equation (11) has been solved subject to Neumann boundary
conditions for pressure obtained by applying momentum equations at the wall.
The SIP procedure (ILU decomposition) has been employed for the Poisson
equation with a tolerance of 1:0 £ 1029: A dimensionless time step of 1 £ 1024

for Ra # 104; 1 £ 1025 for Ra [ ½104; 105�; 1 £ 1026 for Ra [ ½105; 106� and
1 £ 1027 for Ra [ ½106; 107� has been used to advance the time integration in
order to keep the dilation ; always less than 0.001.

In order to check for grid independence the simulations were carried out on a
41 £ 41 and 51 £ 51 uniform mesh. The results for these two grids differed by
less than 1 per cent, thus indicating the grid independence of the results.

Validation studies
The numerical code developed has been validated by solving the glazing
problem i.e. buoyancy driven flow inside a square cavity with two differentially

Evolution to
aperiodic

convection

901



heated vertical walls and two adiabatic horizontal walls. The results have been
compared with the benchmark solutions of Nonino and Croce (1997) and de
Vahl Davis (1983). The range of Ra considered is between 105 and 107 while Pr
is taken to be 0.71. Table I shows the comparison between the results of present
study and benchmark solution. The maximum and minimum grid spacing
employed was 0.04 and 0.004, respectively, with total number of grid points
being equal to 55, in both space directions as in the benchmark study.
Deviation of results from the benchmark solution is observed to be less than
1 per cent for the various parameters. The solutions of de Vahl Davis are upto
Ra ¼ 106 only. The pressure fields obtained were smooth and free from any
spurious oscillations.

Results and discussion
Natural convection in the odd shaped enclosure (Figure 1) is studied by
observing spatial and temporal patterns of flow. The Ra is varied from 105 to
107 for three ARL ¼ 0:2; 0.3 and 0.4. The following sections discuss the trends
that were found in the spatial and temporal dynamics of flow in the odd shaped
enclosure.

Spatial dynamics: general trends
As Ra is increased from 105 to 107, the flow pattern in space undergoes a
change, from a spatially symmetric flow pattern with convection concentrated
more in vertical legs (Ra 105-106) to an unsymmetric multicellular and to an
unsymmetric penetrative convection (Ra 106-107) with convection dominating
in horizontal leg. This can be readily discerned from the contour plots of
isotherms and streamlines shown in Figure 3(a)-(d) for ARL ¼ 0:3: The
isotherms are plotted in the range [0,1] and the ranges of the stream functions
are given in the figure captions. The flow patterns depicted for 105 # Ra # 106

are steady flow fields whereas those for 106 # Ra # 107 are instantaneous
snapshots of unsteady flow fields. This trend indicates that the fluid confined

Ra jcjmax Umax Vmax Nuavg Numax Numin Reference

105 9.67 35.21 69.10 4.52 7.68 0.74 Present
105 9.61 34.73 68.59 4.51 7.72 0.73 de Vahl Davis
105 9.62 34.75 68.65 4.52 7.73 0.72 Nonino
106 16.89 66.11 222.77 8.82 17.49 1.00 Present
106 16.75 64.63 219.36 8.82 17.92 0.99 de Vahl Davis
106 16.82 64.83 220.63 8.82 17.56 0.98 Nonino
107 31.40 152.23 708.54 16.25 38.98 1.38 Present
107 30.16 148.60 699.67 16.52 39.47 1.38 Nonino

Table I.
Validation of code
with numerical
results of Nonino
and de Vahl Davis
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in the vertical legs is less stable to stratification than the fluid confined in the
horizontal leg. This is particularly evident as one observes the total absence of
convection in the horizontal leg for Ra ¼ 105; ARL ¼ 0:2 as shown in Figure 4.
While the differential heating of the side walls of the vertical legs inevitably

Figure 3.
Contour plots of

isotherms and
streamlines for ARL ¼

0:3 and at (a) Ra ¼ 105;
C [ ½25:5; 5:1�;

(b) Ra ¼ 106; C [
½227:9; 19:9�; (c) Ra ¼

4 £ 106; C [
½259:0; 43:5�; (d) Ra ¼
107; C [ ½262:1; 69:2�
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causes circulation loops or rolls, the convection in the horizontal leg is the
outcome of two distinct phenomenons:

(1) generation of convective loop by buoyant elements generated from the
bottom heated wall of the horizontal leg;

(2) buoyant elements of fluids penetrating the horizontal leg from the
vertical legs.

Figures 5 and 6 clearly indicate that the convection rolls generation in the
horizontal leg is encouraged by an increase in the Ra while simultaneously it is
discouraged by a decrease in the ARL. This is so because a decrease in the ARL

essentially amounts to a decrease in the thickness of fluid layer in the
horizontal leg leading to enhanced stability of the layer. Figures 5 and 6 also
indicate that, the ability of penetration of buoyant elements into the horizontal
leg is increased by increasing the Ra (the buoyant elements being more
energetic), while the penetrative effect is mitigated by lowering the ARL. This is
so because a decrease in ARL decreases the kinetic energy Ke of the convecting
buoyant elements in the vertical legs as shown in Figure 7(a)-(c).

Therefore the overall spatial dynamics essentially can be split into two
regimes:

Figure 4.
Contour plots of
isotherms and
streamlines for ARL ¼
0:2 and at Ra ¼ 105;
C [ ½22:2; 2:2�

Figure 5.
Contour plots of
streamlines at ARL ¼
0:2 and at (a) Ra ¼ 106;
C [ ½215:8; 13:5�;
(b) Ra ¼ 107; C [
½256:7; 39:0�
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(1) spatial dynamics in the vertical legs which is somewhat insensitive to
changes in ARL and Ra in the range considered;

(2) spatial dynamics in the horizontal legs which is sensitive to changes in
ARL and Ra.

Thus the spatial dynamics at any given ARL and Ra reflects the outcome of the
competition between the penetration phenomena and convective motion
generation in the horizontal leg. At lower ARL (0.2) the phenomenon of non-
penetrative convection in horizontal leg dominates for 105 # Ra # 107 because
Ke of elements in vertical legs is not sufficient enough for penetrative motion to
occur. This means that there is a threshold Ke of buoyant elements in vertical
legs for penetrative motion to occur. For medium ARL (0.3) the convection
generation in horizontal leg dominates for 105 # Ra # 106 while penetration
phenomenon dominates for 106 # Ra # 107: At high ARL (0.4) the penetration
phenomenon dominates for 105 # Ra # 107: Finally, it can be inferred that
penetrative convection is favoured at higher ARL (0.3-0.4) and Ra (106-107)
while non-penetrative convection in the horizontal leg is favoured at lower ARL

(0.2-0.3) and Ra (105-106).

Figure 6.
Contour plots of

streamlines at ARL ¼
0:4 and at (a) Ra ¼ 105;

C [ ½211:1; 10:8�;
(b) Ra ¼ 106; C [

½233:5; 20:0�; (c) Ra ¼
107; C [ ½2168:0; 57:3�

Figure 7.
Iso-kinetic energy

contours at Ra ¼ 106 for
(a) ARL ¼ 0:2; K [

½0:0; 29560�; (b) ARL ¼
0:3; K [ ½0:0; 52620�;

(c) ARL ¼ 0:4; K [
½0:0; 80033�
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Temporal dynamics: general trends
To study the temporal dynamics the time history of all the dynamical variables
was recorded at three different spatial points marked as 1W, 2W and 3W as
shown in Figure 1. The non- dimensional coordinates of these points are
(0:5 £ ARL; 0.02), ðARL 2 0:02; 1:0 2 ARL þ 0:02Þ and (0.5, 1:0 2 ARL þ
0:02Þ; respectively. Spectral analysis is used to identify patterns in the temporal
behaviour through identification of dominant frequencies. For this purpose, the
discrete time series of u is transformed into frequency domain by applying a
Fast Fourier Transform (FFT) from which the power spectrum P(u ) is obtained
by determining the square of the magnitude of each term in the discrete FFT.
The power spectrum is plotted against the ratio of the non-dimensional
frequency f to the non-dimensional sampling frequency fmax of the discrete time
series.

It was found that for 105 # Ra , 106 and for 0:2 # ARL # 0:4 the flow
always attained a steady state. Figure 8(a)-(c) shows the changes that take
place in the temporal behaviour for ARL ¼ 0:3 with increase in Ra at point 1W.
The flow undergoes the first transition from steady to periodic at Ra ¼ 106: In
Figure 8(a) the time history of local rate of change of temperature is depicted
instead of the time history of velocity u. This is because the periodic nature of
the flow is more clearly brought about in this plot than in the time history of
velocity u. At Ra ¼ 4 £ 106; the flow is quasi-periodic with three dominant
frequencies as can be seen from the power spectrum in Figure 8(b). Finally, one
observes the chaotic convection with a broad based power spectrum (see
Figure 8(c)). These temporal patterns are observed at all the three locations.
With increase in Ra the following can be observed:

(1) the fluctuations become more and more energetic (increase in power in
various frequencies);

(2) broadening of the frequency spectrum with higher and higher
frequencies being excited culminating into a chaotic state;

(3) a shift in the concentration of energy in the lower frequencies towards
the higher ones.

The last observation can be made on the basis of a shift in the most dominant
frequency from lower end to the higher end of the spectrum. This general trend
in the temporal dynamics is observed at all the ARL.

The effect of ARL on the temporal dynamics can be seen from Figure 9(a)-(c)
where the time history and power spectrum of horizontal velocity component u
at point (1) are shown. It is evident that a decrease in the ARL suppresses the
frequency content of the spectrum. Not only the number of active frequencies
are suppressed but the intensity of fluctuations is also reduced. Thus it can be
concluded that reduction in ARL has a stabilizing effect.
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Connection between the spatial and the temporal dynamics
A connection between the spatial and the temporal dynamics can be
established if one observes the temporal behaviour at the three spatial points at
the same ARL and Ra. Figure 10(a)-(c)shows the time history plots of u at the
three spatial points for ARL ¼ 0:2 and Ra ¼ 4 £ 106: It can be observed that
while the flow is nearly periodic at all the three points the frequency of

Figure 8.
Time history and power

spectrum plots for
ARL ¼ 0:3 at point 1W

at (a) Ra ¼ 106; (b) Ra ¼
4 £ 106; (c) Ra ¼ 107
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oscillation is higher at point 1W than at point 3W with the lowest frequency at
point 2W. This supports the earlier proposed spatial dynamics that at lower
ARL (0.2) the penetrative convection is not able to dominate in the horizontal
leg and therefore the fluctuations in the horizontal and the vertical legs are
solely due to their own buoyancy generated convective currents. Higher
frequency fluctuations in the vertical leg is an indication of the fact that for

Figure 9.
Time history and power
spectrum plots of
velocity u at Ra ¼ 4 £
106 at point 1W at
(a) ARL ¼ 0:2; (b) ARL ¼
0:3; (c) ARL ¼ 0:4
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a given Ra the fluid confined in the vertical leg is more prone to convection than
the fluid confined in the horizontal leg.

At larger ARL ¼ 0:4; the earlier proposed idea that the penetrative
convection dominates in the horizontal leg can be further strengthened if one
observes the power spectrum of u at the two spatial points for Ra ¼ 4 £ 106

depicted in Figure 11. It is observed that not only the power content at point 3W
is nearly ten times that at point 1W but also the frequency content is higher at
point 3W than at point 1W. This is the result of fluctuations being generated by
convecting elements in the horizontal leg supplemented by energetic fluid
elements arriving from the vertical legs.

Finally, the most interesting temporal dynamics takes place for moderate
ARL and Ra, as expected because it is under these conditions that the
phenomena of penetrative and non-penetrative convection in the horizontal leg
compete most fiercely in an attempt to dominate. Figure 12 shows the time
history of horizontal velocity u at point 3W for Ra ¼ 2 £ 106 and ARL ¼ 0:3:
There is a radical alteration in the time history at a non-dimensional time of
around 0.135. Since the generation of convection in the horizontal leg requires
on an average lesser time (shorter distances to be covered by the buoyant

Figure 10.
Time history plots of

velocity u at Ra ¼ 4 £
106; ARL ¼ 0:2 at (a)

point 1W; (b) point 2W;
(c) point 3W
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convecting elements) in comparison to the average time required by the
buoyant elements generated in the vertical leg to arrive in the horizontal leg,
the motion in the horizontal leg for t # 0:135 is solely due to non-penetrative
convection in the horizontal leg due to its differential heating. As can be seen
from the plot, the average horizontal velocity for this motion is around 2150.
For t . 0:135 the fluid from the vertical legs penetrates the horizontal leg and
destroys its convection roll. This is evident from the abrupt change in the
magnitude and direction of the average velocity u at point 3W from 2 150 to
+200. This is a clear evidence of the phenomena of penetrative convection. It is
also noticeable that this causes the velocity u to undergo a change from low
frequency, large amplitude fluctuations to high frequency, small amplitude
fluctuations.

Heat transfer
To study the effect of Ra and ARL on heat transfer across the cavity the
magnitude of the average Nusselt number on the hot walls BC, CD and DE
(Figure 1) were computed as follows:

Figure 12.
Time history plot of
velocity u at point 3W for
Ra ¼ 2 £ 106; ARL ¼ 0:3

Figure 11.
Power spectrum plots of
velocity u at Ra ¼ 4 £
106; ARL ¼ 0:4 at
(a) point 1W; (b) point 3W
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NuBC ¼
1

ð1 2 ARLÞ

Z 12ARL

0

›u

›x

� �
dy ð20Þ

NuCD ¼
1

ð1 2 2ARLÞ

Z 122ARL

0

2
›u

›y

� �
dx ð21Þ

NuDE ¼
1

ð1 2 ARLÞ

Z 12ARL

0

2
›u

›x

� �
dy ð22Þ

For unsteady flows the Nusselt numbers computed from equations (20)-(22) are
functions of time as can be seen in Figure 13. The actual time variations of
these average Nusselt numbers were qualitatively similar to the velocity
variations with time depicted in Figures (8)-(10). From a quantitative point of
view the time mean values of these average Nusselt numbers are more
important. Therefore, the time mean values were calculated by integrating the
time trace of the average Nusselt number over a sufficiently long interval of
time and dividing by the time interval of integration. The time interval is so
selected so that the initial transient is not involved in the averaging.

It was found that while average Nusselt numbers or their time mean values
for wall BC and DE were identical, the average Nusselt number or its time
mean value for wall CD was radically different from that of wall BC or DE.
Figure 14 compares the variation of average Nusselt numbers on walls BC and
CD with Ra for different ARL. The range of Ra considered has been extended on
the lower side to 103 to have a larger database for the heat transfer rates.
The spatial dynamics in the vertical and the horizontal legs of the enclosure can
be utilized to understand the overall heat transfer characteristics of the

Figure 13.
Time trace of average

Nusselt number on hot
wall BC of the cavity at

ARL ¼ 0:3 and
Ra ¼ 4 £ 106
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Figure 14.
Variations in average
Nusselt number on hot
walls of the cavity with
Ra at (a) ARL ¼ 0:2;
(b) ARL ¼ 0:3;
(c) ARL ¼ 0:4
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enclosure. As seen in Figure 14(a)-(c), while NuBC; associated with the vertical
leg, increases monotonically with Ra, the average Nusselt number for the
horizontal leg NuCD first decreases and then begins to rise with increase in Ra.
It is worth noting that for low Ra (,104), the convective velocities are small and
hence the values of NuBC and NuCD approach to those for conduction. The
conduction values can be approximately found by taking a linear temperature
distribution in the vertical and horizontal legs. This yields

NuBC ø NuCD ø
1

ARL

� �

in the conduction regime. Figure 14(a)-(c) shows good agreement with this
value for low Ra (,104). As Ra is increased, convection becomes significant
and starts to control the temperature field both in the vertical and the
horizontal leg of the enclosure. This is indicated in Figure 14(a)-(c) by the
separation of the curves for wall BC and CD. Because the spatial flow pattern in
the vertical leg comprises of formation of a single convective loop or roll, the
Nusselt number for wall BC rises with increase in Ra beyond 104. It can also be
seen from Figure 14(a)-(c) that ARL has very little effect on the heat transfer
characteristic of wall BC. The only significant effect of ARL is to extend the
regime of insignificant convection to somewhat larger Ra values for lower ARL.
This supports the earlier mentioned trend of suppression of convection at lower
ARL. It is interesting to note that in the unsteady regime ðRa . 106Þ the time
mean values of the Nusselt numbers for both walls follow the same trend as
that of the steady regime.

Since the convection in the horizontal leg takes place in non-penetrative and
penetrative modes, the heat transfer characteristic of wall CD exhibits some
interesting features. It can readily be seen in Figure 14(a)-(c) that in the non-
penetrative mode the Nusselt number for wall CD first decreases even below
the near conduction values and then rises beyond a certain Ra controlled by
ARL. This is due to the fact that fluid in the vertical leg inevitably forms a
convective loop or roll for any Ra while a threshold value of Ra or temperature
gradient is needed by the fluid in the horizontal leg to form convective loops.
This means that at low enough Ra, lower than the critical value needed to cause
convective loops in the horizontal leg, the fluid forms convective loops in the
vertical legs. The heated fluid elements in the vertical legs, rise from the walls
BC and DE, and unable to penetrate into the horizontal leg owing to their low
Ke, rise straight up to the cold wall where they lose heat and start to sink
downwards. Since the nearly stagnant fluid in the horizontal leg gets
surrounded by relatively hot rising buoyant fluid elements on both sides of the
leg, the thermal diffusion from these relatively hot buoyant fluid elements
reduces the thermal stratification in the horizontal leg which results in the
reduction of heat transfer from wall CD. This phenomenon continues till Ra
reaches a threshold value such that the fluid in the horizontal leg is able to
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generate its own convection loops or rolls. As mentioned earlier in the
discussion on spatial dynamics, the formation of convective loops in the
horizontal leg is encouraged at larger ARL and opposed at lower ARL.
Therefore the heat transfer rate for wall CD continues to fall upto a larger value
of Ra for ARL ¼ 0:2 than for the cases of ARL ¼ 0:3 and ARL ¼ 0:4;
respectively. Once the convective rolls are generated in the horizontal leg the
heat transfer rate again starts to rise.

As Ra is further increased the convective loops in the horizontal leg are
destroyed and the penetrative mode of convection is established. This results in
further increase of heat transfer. In the penetrative mode of convection at
ARL ¼ 0:4 the heat transfer from the wall CD is much less than for wall BC.

Conclusions
It has been shown that buoyancy induced motion in the odd shaped enclosure
takes place in two distinct modes:

(1) non-penetrative convection, and

(2) penetrative convection. The existence of penetrative convection seems to
be dependent on the Ke of the buoyant elements in the vertical legs of the
enclosure which is in turn dependent on overall Ra and ARL. The
temporal dynamics exhibits the general trend of transition from steady
state motion to that of periodic motion which further changes into a
multi-frequency quasi-periodic motion, finally terminating into a chaotic
state, with increase in Ra from 105 to 107.

For a non-penetrative convective motion, the frequency content as well as the
power content in the various frequencies in a quasi-periodic state is higher in
the vertical leg than in the horizontal leg. While in the case of penetrative
convection it is quite opposite, with the horizontal leg exhibiting higher
frequencies and more energetic fluctuations. The ARL may be effectively
utilized to control the fluctuations.

The heat transfer from the heated wall of the vertical legs is more than that
from the heated wall of the horizontal leg and the penetrative mode of
convection enhances the heat transfer rate from the heated wall of the
horizontal leg. The ARL has a very slight effect on the heat transfer
characteristic of vertical leg while it has a significant effect on the heat transfer
from the hot wall of the horizontal leg.
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